用数学归纳法证明(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2n-1)*(2n)^2-2n(2n+1)^2] =-n(n+1)(4n+3)

用数学归纳法证明(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2n-1)*(2n)^2-2n(2n+1)^2] =-n(n+1)(4n+3)

题目
用数学归纳法证明(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2n-1)*(2n)^2-2n(2n+1)^2] =-n(n+1)(4n+3)
答案
按照套路来就行.
1)n=1时,显然成立
2)设n=k时,等式成立,
n=k+1时,(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2k-1)*(2k)^2-2k(2k+1)^2]+[(2k+1)*(2k+2)^2-2(k+2)(2n+3)^2] =-k(k+1)(4k+3)+[(2k+1)*(2k+2)^2-2(k+2)(2n+3)^2]=-(k+1)(k+2)(4n+7)
(这一步硬算就行)
故对所有n=k成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.