已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数. (1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)
题目
已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.
答案
解(1)f′(x)=3ax2+2bx+c.由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18.(3分)又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,所以-1和3必是f′(x)=0的两个根.从而3a...
(1)因为函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,则导数在区间(-∞,-1)和(3,+∞)上都大于零,在区间(-1,3)上小于零,可知,-1和3对应的导数值为0,再由f′(0)=-18,可求得导函数,再利用导函数与原函数间的关系,表示出原函数,再由f(0)=-7求解.
(2)若函数f(x)是单调函数,则导函数对应的方程无根即可,所以下面就转化为导数是恒大于零还是恒小于零问题求解.
利用导数研究函数的单调性;函数解析式的求解及常用方法.
本题主要考查函数的单调性与导数正负间的关系,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一个闹钟,分针长3厘米,时针长2.5厘米,分针1小时走( )厘米.
- 文言文 不责碎玉史
- 古代四库全书是指哪些?
- 写一篇200字左右的初中生自我介绍
- 一列火车每小时行驶54千米,比汽车速度快5分之1,汽车平均每小时行驶多少千米
- 蛋白质工程与基因工程的关系
- I live1.my brother and parents in a house2.London
- 含有乐的成语~急
- 观察下列各式:x,-2x∧2,3x∧3,-4x∧4,...,19x∧19,-20x∧20,...,则第n个单项式是( )
- 数学解方程x²-2x-99=0
热门考点
- 求曲线y=(x^2-3x+6)/x^2在横坐标x=3处的法线方程.
- 等腰三角形,底角和顶角的度数比是1:3,它的底角是多少度?如果按角分,这是个什么三角形?
- 下列命题中,假命题是( ) A.两个锐角对应相等的两个直角三角形全等 B.斜边及一锐角对应相等的两个直角三角形全等 C.两条直角边对应相等的两个直角三角形全等 D.一条直角边和另一
- 计算行列式D=(7,6,3,0;3,5,7,-1;5,4,3,0;5,6,5,-1)的值
- 3x的平方-4x-5=0
- How long is the Yangtze River?(同义句) ______ _______ is the Yangtze River?
- (x+y)^2-6(x+y)z+9z^2分解因式
- 伯父摸着胡子,笑了笑,说:“还是我的记性好.”(改为i转述句)
- 1.“日啖荔枝三百颗,不辞长作岭南人”诗句中的荔枝属于( ).
- 一个字是3个男组成的怎么读