“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装
题目
“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:
物资种类 | 食品 | 药品 | 生活用品 |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨所需运费(元/吨) | 120 | 160 | 100 |
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
答案
(1)根据题意,装运食品的车辆数为x,装运药品的车辆数为y,
那么装运生活用品的车辆数为(20-x-y),
则有6x+5y+4(20-x-y)=100,
整理得,y=-2x+20;
(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20-2x,x,
由题意,得
,
解这个不等式组,得5≤x≤8,
因为x为整数,所以x的值为5,6,7,8.
所以安排方案有4种:
方案一:装运食品5辆、药品10辆,生活用品5辆;
方案二:装运食品6辆、药品8辆,生活用品6辆;
方案三:装运食品7辆、药品6辆,生活用品7辆;
方案四:装运食品8辆、药品4辆,生活用品8辆.
(3)设总运费为W(元),
则W=6x×120+5(20-2x)×160+4x×100
=16000-480x,
因为k=-480<0,所以W的值随x的增大而减小.
要使总运费最少,需x最大,则x=8.
故选方案4.
W
最小=16000-480×8=12160元.
最少总运费为12160元.
(1)装运生活用品的车辆数为(20-x-y),根据三种救灾物资共100吨列出关系式;
(2)根据题意求出x的取值范围并取整数值从而确定方案;
(3)分别表示装运三种物质的费用,求出表示总运费的表达式,运用函数性质解答.
一次函数的应用.
此题运用一次函数的性质求最值重在求自变量的取值范围;方案设计是在自变量的取值范围中取特殊值来确定.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点