样本方差公式中为什么要除以(n-1)而不是n呢?谁能讲讲其中的奥妙?
题目
样本方差公式中为什么要除以(n-1)而不是n呢?谁能讲讲其中的奥妙?
答案
总体方差为σ²,均值为μ
S=[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]/(n-1)
X表示样本均值=(X1+X2+...+Xn)/n
设A=(X1-X)^2+(X2-X)^2.+(Xn-X)^2
E(A)=E[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]
=E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^2+(X2-X)^2.+(Xn)^2-2X*Xn+X^2]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(X1+X2+...+Xn)]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(nX)]
=E[(X1)^2+(X2)^2...+(Xn)^2-nX^2]
而E(Xi)^2=D(Xi)+[E(Xi)]^2=σ²+μ²
E(X)^2=D(X)+[E(X)]^2=σ²/n+μ²
所以E(A)=E[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]
=n(σ²+μ²)-n(σ²/n+μ²)
=(n-1)σ²
所以为了保证样本方差的无偏性
S=[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]/(n-1)
E(S)=(n-1)σ²/(n-1)=σ²
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点