已知集合A={x|-2≤x≤2},B={x|-1≤x≤1},对应法则f:x→y=ax,若在f的作用下能够建立从A到B的映射,求实数a的取值范围.
题目
已知集合A={x|-2≤x≤2},B={x|-1≤x≤1},对应法则f:x→y=ax,若在f的作用下能够建立从A到B的映射,求实数a的取值范围.
答案
∵f:y=ax 为A到B的映射
∴对任意A中的任意元素x有ax属于B
-2a属于B,即-1≤-2a≤1,得:a≥-
或a≤
2a属于B,即-1≤2a≤1得:-
≤a≤
从而,a=
或者 a=-
.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点