若点M是△ABC所在平面内一点,且满足5AM的向量=AB的向量=3AC的向量,则△ABM与△ABC的面积之比为( )
题目
若点M是△ABC所在平面内一点,且满足5AM的向量=AB的向量=3AC的向量,则△ABM与△ABC的面积之比为( )
A.1/5 B.2/5 C.3/5 D.4/5
答案
向量AM=(1/5)AB+(3/5)AC=(1/5)(AC+CB)+(3/5)AC
=(4/5)AC+(1/5)CB,
∴向量CM=CA+AM=(1/5)CA+(1/5)CB,
延长CM交AB于E,设CE=yCA+(1-y)CB,则
y=(1-y),y=1/2.
∴CM=(2/5)CE,ME=(3/5)CE,
△ABM与△ABC的面积之比=ME/CE=3/5,选C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点