设函数f(x)=-4x+b,且不等式|f(x)|<c的解集为{x|-1<x<2}. (1)求b的值; (2)解关于x的不等式(4x+m)f(x)>0(m∈R).

设函数f(x)=-4x+b,且不等式|f(x)|<c的解集为{x|-1<x<2}. (1)求b的值; (2)解关于x的不等式(4x+m)f(x)>0(m∈R).

题目
设函数f(x)=-4x+b,且不等式|f(x)|<c的解集为{x|-1<x<2}.
(1)求b的值;
(2)解关于x的不等式(4x+m)f(x)>0(m∈R).
答案
(1)∵f(x)=-4x+b
∴|f(x)|<c的解集为{x|
b−c
4
<x<
b+c
4
}
又∵不等式|f(x)|<c的解集为{x|-1<x<2}.
b−c
4
=−1
b+c
4
=2

解得:b=2
(2)由(1)得f(x)=-4x+2
若m=-2
则(4x+m)f(x)=(4x-2)(-4x+2)≤0恒成立
此时不等式(4x+m)f(x)>0的解集为∅
若m>-2
则-
m
4
1
2

则(4x+m)f(x)>0的解集为(-
m
4
1
2

若m<-2
则-
m
4
1
2

则(4x+m)f(x)>0的解集为(
1
2
,-
m
4
(1)解绝对值不等式|f(x)|<c,结合不等式|f(x)|<c的解集为{x|-1<x<2}.我们可以构造关于b,c的方程组,解方程组即可得到b的值;
(2)由于不等式中含有参数m,故我们要对参数m进行分类讨论,分m=-2,m>-2,m<-2三种情况进行讨论,最后综合讨论结果即可得到答案.

绝对值三角不等式;一元二次不等式的应用.

本题考查的知识点是绝对值不等式的解法,一元二次不等式的应用,其中(1)的关键是解绝对值不等式并根据已知构造关于b,c的方程组,(2)的关键是对参数m分m=-2,m>-2,m<-2三种情况进行讨论.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.