已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值和P点坐标

已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值和P点坐标

题目
已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值和P点坐标
答案
点P到点A(0,2)的距离与P到该抛物线准线的距离之和
d=|PF|+|PA|≥|AF|=根号【(12)^2+2^2】 =(根号17) /2 .
故点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为:2分之(根号17) .
我同意这个观点
下面求P点坐标
P在直线AF上,直线AF的斜率k=(2-0)/(0-1/2)=-4
故直线AF的的方程为y=-4x+2
由y=-4x+2与y2=2x
联立得x=(9-√17)/16,y=(√17-1)/4
或x=(9+√17)/16,y=(-√17-1)/4
又有P点的位置知x<1/2
即x=(9+√17)/16,y=(-√17-1)/4(舍去)
故P点坐标((9-√17)/16,(√17-1)/4)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.