函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为_.

函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为_.

题目
函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为______.
答案
因为f(x)=-x2+4x-1开口向下,对称轴为x=2,所以须分以下三种情况讨论
①轴在区间右边,t+1≤2⇒t≤1,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t+1)=-t2+4t-1.
故g(t)=-t2+4t-1.
②轴在区间中间,t<2<t+1⇒1<t<2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(2)=-22+4×2-1=3.
故g(t)=3.
③轴在区间左边,t≥2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+2t+2.
故g(t)=-t2+2t+2.
∴g(t)=
t2+4t−1            (t≤1)
3                      (1<t<2)       
t2+2t+2            (t≥ 2)            

∴g(t)的最大值为3
故答案为;3
因为对称轴固定,区间不固定,须分轴在区间左边,轴在区间右边,轴在区间中间三种情况讨论,找出g(t)的表达式,再求其最大值.

二次函数的性质.

本题的实质是求二次函数的最值问题,关于给定解析式的二次函数在不固定闭区间上的最值问题,一般是根据对称轴和闭区间的位置关系来进行分类讨论,如轴在区间左边,轴在区间右边,轴在区间中间,最后在综合归纳得出所需结论

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.