在满足面积与周长的数值相等的所有直角三角形中,面积最小值为多少

在满足面积与周长的数值相等的所有直角三角形中,面积最小值为多少

题目
在满足面积与周长的数值相等的所有直角三角形中,面积最小值为多少
答案
设直角三角形直角边长为a,b.
ab/2=a+b+√(a^2+b^2)
≥2√(ab)+√(2ab),
ab-(4+2√2)√(ab)≥0,
√(ab)≥4+2√2,
ab/2≥12+8√2,
a=b时,等号成立,所以面积最小值为12+8√2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.