已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为( ) A.233 B.433 C.23 D.833
题目
已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为( )
A.
B.
C.
2D.
答案
过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,
则有
V四面体ABCD=×2××2×h=h,
当直径通过AB与CD的中点时,
hmax=2=2,故
Vmax=.
故选B.
四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.
棱柱、棱锥、棱台的体积;球的性质.
本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点