用1、3、5、7这四个数字可以组成多少个能被11整除的四位数?

用1、3、5、7这四个数字可以组成多少个能被11整除的四位数?

题目
用1、3、5、7这四个数字可以组成多少个能被11整除的四位数?
答案
总共能组成A(4,4)=4*3*2*1=24个数
1375、1573、3157、3751、5137、5731、7315、7531这八个数可以被11整除!
这是计算器按出来的,但是可以看到规律,就是每个奇数开头都有2个可以被11整除的数!
解毕!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.