圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求

圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求

题目
圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求
圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求AF·BF的取值范围
答案
首先求出圆方程(x-1)²+y²=1【不会求请追问】 所以圆心为(1,0) 求出抛物线方程【不会请追问】 得到y²=2px 然后得到抛物线焦点为(½p,0),所以½p=1,所以p=2. 所以抛物线方程y=4x, ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.