如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

题目
如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.
用勾股定理来证明.下面是图.
答案
为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a
∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2
EF^2=CE^2+CF^2=a^2+(2a)^2=5a^2
AE^2=AB^2+BE^2=(4a)^2+(3a)^2=25a^2
∴AF^2+EF^2=AE^2
由勾股定理逆定理知∠AFE=90°
从而得AF⊥EF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.