已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为(  ) A.(-∞,-1) B.(-1,+∞) C.(-1,0) D.(0,+∞)

已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为(  ) A.(-∞,-1) B.(-1,+∞) C.(-1,0) D.(0,+∞)

题目
已知函数f(x)是定义在R上的可导函数,且f(-1)=2,f′(x)>2,则不等式f(x)>2x+4的解集为(  )
A. (-∞,-1)
B. (-1,+∞)
C. (-1,0)
D. (0,+∞)
答案
设F(x)=f(x)-(2x+4),
则F(-1)=f(-1)-(-2+4)=2-2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(-1,+∞),
即f(x)>2x+4的解集为(-1,+∞).
故选B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.