证明:设λ是方阵A的特征值,证明(1) λ^2是A^2的特征值;(2)当A可逆 时,λ^-1是A^-1的特征值

证明:设λ是方阵A的特征值,证明(1) λ^2是A^2的特征值;(2)当A可逆 时,λ^-1是A^-1的特征值

题目
证明:设λ是方阵A的特征值,证明(1) λ^2是A^2的特征值;(2)当A可逆 时,λ^-1是A^-1的特征值
答案
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
A^(-1)x=[A^(-1)(cx)]/c=[A^(-1)(Ax)]/c=x/c,因此1/c是A^(-1)的特征值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.