如图,在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm,AD=4根号3cm,求三角形BOC面积
题目
如图,在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm,AD=4根号3cm,求三角形BOC面积
答案
过O作OM⊥AD,交AD,BC于M,N
∵OM⊥AD,AD‖BC
∴MN⊥BC
∴∠AMO=∠CNO①
∵∠AOM=∠CON②
两条对角线AC、BD相交于点O
∴AO=CO③
∴△AOM≌△CON(AAS)
∴OM=ON
∵矩形ABCD
∴AD‖BC,∠ABC=90°
∵MN⊥BC
∴AB‖MN
∴ABNM是□
∴AB=MN=4cm
∴ON=OM=2cm
∵AD=BC=4√3
∴S△BOC=4√3*2*1/2=4√3平方厘米
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点