已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)和(-1/2,0)的直线) (1)求函数f(x)的解析式(用含c的式子表示) (2)另g(x)=f(x

已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)和(-1/2,0)的直线) (1)求函数f(x)的解析式(用含c的式子表示) (2)另g(x)=f(x

题目
已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)和(-1/2,0)的直线) (1)求函数f(x)的解析式(用含c的式子表示) (2)另g(x)=f(x)/x,求y=g(x)在[1,2]上的最大值
答案
1)因为f(x)=ax∧2+bx+c(c>0且为常数)的导函数为f'(x)=2ax+b,所以这条直线过(0,1)和(-1/2,0)这两点,所以
b=1,a=1,所以f(x)=x∧2+x+c
2)因为g(x)=f(x)/x=x+c/x+1,为一个对勾函数,因为c>0且为常数,
所以函数在(0,√c]上减,在[√c,﹢∞)上增,
所以要分类讨论,当c≦1时g(x)在[1,2]上增,所以最大值为g(2)=3+c/2,
当c≥4时所以g(x)在[1,2]上减,所以最大值为g(1)=2+c
当1<c<4时,g(x)在[1,√c]上减,在[√c,2]上增所以最大值为g(1)或g(2)
因为g(2)-g(1)=1-c/2,所以当它大于0时,c<2,当它小于0时,2<c
所以综上所述,g(x)的最大值①=3+c/2,c∈(0,2],②=2+c,c∈(2,﹢∞)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.