已知函数f(x)=ax+lnx 求在[1.e]的最大值

已知函数f(x)=ax+lnx 求在[1.e]的最大值

题目
已知函数f(x)=ax+lnx 求在[1.e]的最大值
答案
f′(x)=a+1/x=(ax+1)/x,令f′(x)=0,则x=-1/a
(1)当a≧0时,
当x<-1/a,f′(x)﹤0,f(x)为减函数;当x≧-1/a,f′(x)>0,f(x)为增函数,故x=-1/a,f(x)为极小值.
而f(1)=a,则f(e)=ae+1为极大值,
(2)当a<0时
x<-1/a,f′(x)>0,f(x)为增函数;当x≧-1/a,f′(x)<0,f(x)为减函数,则,极大值为f(-1/a)=-1-ln(-a)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.