如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.

如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.

题目
如图,CD、CF分别是△ABC的内角平分线和外角平分线,DF∥BC交AC于点E,那么DE=EF吗?说出你的理由.
答案
答:DE=EF,理由如下:
∵CD与CF分别是△ABC的内角、外角平分线,
∴∠DCE=
1
2
∠ACB,∠ECF=
1
2
∠ACG,
∵∠ACB+∠ACG=180°,
∴∠DCE+∠ECF=90°,
∴△DCF为直角三角形,
∵DF∥BC,
∴∠EDC=∠BCD,
∵∠ECD=∠BCD,
∴∠EDC=∠ECD,
∴ED=EC,
同理EF=EC,
∴DE=EF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.