若集合M中的元素是连续的自然数,集合M中元素是连续自然数,card(M)>=2 且M中所有元素之和为1996

若集合M中的元素是连续的自然数,集合M中元素是连续自然数,card(M)>=2 且M中所有元素之和为1996

题目
若集合M中的元素是连续的自然数,集合M中元素是连续自然数,card(M)>=2 且M中所有元素之和为1996
这种集合多少个?
解法是:
设card(M)=n,(n>=2);
第一个元素是m,则最后一个是(m+n-1);
M中所有元素之和为 (m+m+n-1)*n/2=1996;
即 (2m+n-1)*n=3992;
因为2m+n-1与n中一个奇数,一个偶数;
而且2m+n-1>n;
所以 (2m+n-1)*n=3992=8*499;
n=8;
2m+n-1=499;
所以m=246;
其中2m+n-1>n是如何得到的?
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.