设n阶行列式有n平方-n个以上元素为零,证明该行列式为零

设n阶行列式有n平方-n个以上元素为零,证明该行列式为零

题目
设n阶行列式有n平方-n个以上元素为零,证明该行列式为零
答案
n阶行列式共有n²个元素,如果它有n²-n个以上的元素为0,那么它有零行(一行全是0).可以用反证法说明,假设没有零行,那么每一行至少有一个非零元,n行至少就有n个非零元,那么零元素的个数就≤n²-n个,而不是>n²-n个.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.