在等比数列{an}中,如果a1+a2+…+an=2^n-1(n属于正整数),则a1^2+a2^2+…+an^n

在等比数列{an}中,如果a1+a2+…+an=2^n-1(n属于正整数),则a1^2+a2^2+…+an^n

题目
在等比数列{an}中,如果a1+a2+…+an=2^n-1(n属于正整数),则a1^2+a2^2+…+an^n
答案
a1+a2+…+an=2^n-1
a1=1
an=2^n-1-[2^(n-1)-1]
=2^(n-1)
a1^2+a2^2+…+an^2
=1+4+……+4^(n-1)
=1(1-4^n)/(1-4)
=(4^n-1)/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.