普通年金终值公式推导思路

普通年金终值公式推导思路

题目
普通年金终值公式推导思路
答案
设终值为S,年金为A,利率为i,期数为n:
S=A+A(1+i)+……+A(1+i)^n-1
此等式两边同乘以1+i得:
1+iS=A(1+i)+A(1+i)^2……+A(1+i)^n
后式减前式可得:
iS=A(1+i)^n-A
则有:S=A[(1+i)^n-1]/i
其实这就是个首项为A,公比为(1+i),项数为n的等比数列的和,直接套用公式:
首项×(1-公比的n次方)÷(1-公比)
即可得出.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.