数列 设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,证明:|an-4|=2);liman=4

数列 设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,证明:|an-4|=2);liman=4

题目
数列 设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,证明:|an-4|=2);liman=4
设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,(n>=2),证明:|an-4|=2);liman=4
答案
这是一个很好的题目.
对于数列{an},递推关系an=√(3a(n-1)+4)虽然明确,但首项a1不明确,所以该数列是不确定的,通常需要讨论.
不难发现,当a1=4时,a2=a3=...=an=4,表明此时数列{an}为常数列,通项an=4
当0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.