用数学归纳法求证,当1-(x+3)^n时,(n是正整数) 能被X+2整除

用数学归纳法求证,当1-(x+3)^n时,(n是正整数) 能被X+2整除

题目
用数学归纳法求证,当1-(x+3)^n时,(n是正整数) 能被X+2整除
答案
n=1时,是显然的
设n=k时成立
则n=k+1时 1-(x+3)^(k+1) = 1-(x+3)(x+3)^k= 1-(x+3) + (x+3) -(x+3)(x+3)^k
= -(x+2)+(x+3)( 1-(x+3)^k )
1-(x+3)^k 由假设知能被x+2整除
所以 命题成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.