已知函数f(x)=loga(x+1),g(x)=2loga(2x+t),若a属于(0,1),x属于[0,1]时,不等式f(x)>=g(x)恒成立,求实数t的取值范围
题目
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t),若a属于(0,1),x属于[0,1]时,不等式f(x)>=g(x)恒成立,求实数t的取值范围
答案
已知函数f(x)=log‹a›(x+1),g(x)=2log‹a›(2x+t)(t∈R),其中x∈[0,15].a>0,a≠1.(1)若1是关于x的方程f(x)=g(x)的一个解,求t的值.(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点