当x为何值时,式子|x-3|+|x+2|有最小值,并求出最小值
题目
当x为何值时,式子|x-3|+|x+2|有最小值,并求出最小值
答案
|a|+|b|≥|a+b|
当ab≥0时取等号
所以|x-3|+|x+2|
=|3-x|+|x+2|≥|3-x+x+2|=5
取等号则(3-x)(x+2)≥0
(x-3)(x+2)≤0
-2≤x≤3
所以-2≤x≤3时最小值=5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点