.设A为3阶方阵,且矩阵A-E,A+E,A+3E 均不可逆,则 |A|=?

.设A为3阶方阵,且矩阵A-E,A+E,A+3E 均不可逆,则 |A|=?

题目
.设A为3阶方阵,且矩阵A-E,A+E,A+3E 均不可逆,则 |A|=?
答案
因为 A-E,A+E,A+3E 均不可逆
所以 |A-E|=0,|A+E|=0,|A+3E|=0
所以 A 有特征值 1,-1,-3
而A是3阶方阵,故 1,-1,3 是A的全部特征值
所以 |A| = 1*(-1)*(-3) = 3.
有疑问请消息我或追问
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.