3道高等数学题
题目
3道高等数学题
f(x)=x(x-1)(x-2)(x-3)…(x-n) 求f(x)的n+1阶导数.
应用lagrange证明在[-1,1]上 arcsinx+arccosx=0.5π
f和g在[a,b]上可导,且g≠0,证明c∈(a,b) 使得[f(a)-f(c)]/[g(c)-g(b)]=f'(c)/g'(c)
答案
第一题,f中x的最高次数是n+1,因此求f的n+1阶导数就是求x^(n+1)的n+1解导数,答案就是(n+1)!.第二题,根本不用中值定理,你就令arcsinx=t,则有sint=x,cos(0.5π-t)=x,因此有arccosx=0.5π-t,于是就有arcsinx+arccosx=0.5...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点