直线l与抛物线y^2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于M,若y1*y2=-1

直线l与抛物线y^2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于M,若y1*y2=-1

题目
直线l与抛物线y^2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于M,若y1*y2=-1
求证(1)M的坐标(1,0)
(2)OA垂直OB
(3)求△AOB的面积最小值
答案
证明:(1)设直线l的方程为x=ay+b ∵A(x1,y1),B(x2,y2)在抛物线y^2=x上 ∴x1=y1^2,x2=y2^2
∵A,B也在直线l上 ∴x1=y1^2=ay1+b,x2=y2^2=ay2+b
∴可得方程组y1^2-ay1-b=0 ∴y1,y2是方程y^2-ay-b=0的两个根
y2^2-ay2-b=0
∴y1+y2=a,y1*y2=-b
∵y1*y2=-1 ∴b=1 ∴直线l的方程为x=ay+1
∵l与x轴交于点M ∴令y=0,此时x=1 ∴M的坐标为(1,0),得证
(2)∵向量OA=(y1^2,y1),向量OB=(y2^2,y2)
∴向量OA*(此处应该用点乘符号,但我打不出来,抱歉)向量OB=y1^2*y2^2+y1*y2=(y1*y2)^2+y1*y2
∵y1*y2=-1 ∴向量OA*向量OB=(-1)^2+(-1)=1-1=0
∴向量OA⊥向量OB ∴OA⊥OB,得证
(3)S△AOB=S△AOM+S△BOM=(1/2)*OM*|y1|+(1/2)*OM*|y2|=(1/2)*1*(|y1|+|y2|)=(1/2)*(|y1|+|y2|)
∵y1*y2=-1 ∴y1,y2异号 ∴|y1|+|y2|=|y1-y2|
∵|y1-y2|=√(y1+y2)^2-4y1*y2 且y1+y2=a,y1*y2=-1

(这是根号,后面的式子都包括在里面,下同)
∴|y1-y2|=√a^2+4 ∴ S△AOB=(1/2)* √a^2+4
∵a∈R ∴a^2的最小值为0 ∴S△AOB的最小值=(1/2)*2=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.