已知平面上一定点C(2,0)和直线L:Χ=8,垂足于Q,且(向量PC+1/2向量PQ)·(向量PC-1/2向量PQ)=0.
题目
已知平面上一定点C(2,0)和直线L:Χ=8,垂足于Q,且(向量PC+1/2向量PQ)·(向量PC-1/2向量PQ)=0.
(1)求动点P的轨迹方程;
(2)若EF为圆N:X平方+(y-1)平方=1的任一条直径,求向量PE·向量PF的最值
答案
(1).向量PC=(2-x,-y),PQ=(8-x,y-y)=(8-x,0);
故PC+(1/2)PQ=(2-x+(8-x)/2,-y)=(6-(3/2)x,-y);PC-(1/2)PQ=(2-x-(8-x)/2,-y)=(-2-x/2,-y);
(PC+(1/2)PQ)•(PC-(1/2)PQ)=[6-(3/2)x](-2-x/2)+(-y)(-y)=-12+(3/4)x²+y²=0
故得P点的轨迹方程为 x²/16+y²/12=1,即P的轨迹是一个a=4,b=2√3,焦点在x轴上的椭圆.
(2)若EF为过圆N:x^2+(y-1)^2=1圆心的任一条直线,求PE向量•PF向量的最值.
E,F应改该在园上吧?那么EF就是直径.
把园的方程改成参数形式:x=cost,y=1+sint;
把椭圆方程也改写成参数形式:x=4cosθ,y=2(√3)sinθ;
因为EF是直径,故可设E(cost,1+sint);F(cos(π+t),1+sin(π+t))=(-cost,1-sint);
P在椭圆上,故P(4cosθ,2(√3)sinθ);于是:
PE=(cost-4cosθ,1+sint-2(√3)sinθ);PF=(-cost-4cosθ,1-sint-2(√3)sinθ);于是:
PE•PF=(cost-4cosθ)(-cost-4cosθ)+[1+sint-2(√3)sinθ][1-sint-2(√3)sinθ]
=(-cos²t+4cosθcost-4cosθcost+16cos²θ)+[1-sin²t-2(√3)sinθ(1-sint)-2(√3)sinθ(1+sint)+12sin²θ]
=16cos²θ-4(√3)sinθ+12sin²θ=12+4cos²θ-4(√3)sinθ=12+4(1-sin²θ)-4(√3)sinθ
=-4sin²θ-4(√3)sinθ+16=-4(sin²θ+(√3)sinθ)+16=-4[(sinθ+(√3)/2)²-3/4]+16=-4[sinθ+(√3)/2]²+19
故当sinθ=-(√3)/2,即θ=-π/3或π+π/3=4π/3时,PE•PF获得最大值19;
当sinθ=1,即θ=π/2时,PE•PF获得最小值-4[1+(√3)/2]²+19=12-4√3.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 1956年以后,中国共产党领导中国人民在社会主义建设的过程中经历那几个阶段的探索?
- That I am wrong,I loved the people do not need to change what的意思
- 唐太宗与贞观之治的关系
- 读题填空:某公园成人票价20元,儿童票价8元,某旅行团共有60人,买门票共花了960元,问:成人与儿童各多少人?
- 使用功率为2kw的电路把2Kg的水从20°加热到100°,需要多长时间?已知电路的效率为60%,水的比热为4200
- 在一个口袋中有6个黑球、5个白球、4个红球,若保证取到白球,则至少应从中取出( )个球.
- 自来水公司要铺设50米长的水管现在只有3米和5米两种水管,在不浪费的情况下有几种用法?
- 介词填空 1.what class are you( )? 2.How(
- Steak is more delicious than Pizza.
- 数字推理:1/6,1/6,1/12,1/24,()括号里应该填什么为什么
热门考点