y=x^/1+x^,求f(m)+f(1/m),f(1)+f2+f3+f4+f1/2+f1/3+f1/4的值

y=x^/1+x^,求f(m)+f(1/m),f(1)+f2+f3+f4+f1/2+f1/3+f1/4的值

题目
y=x^/1+x^,求f(m)+f(1/m),f(1)+f2+f3+f4+f1/2+f1/3+f1/4的值
答案
f(m)+f(1/m)=m^2/(1+m^2)+(1/m^2)/(1+(1/m)^2)=m^2/(1+m^2)+1/(1+m^2)=1
f(1)+f2+f3+f4+f1/2+f1/3+f1/4=f1+f1+f2+f1/2+f3+f1/3+f4+f1/4=1+1+1+1=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.