已知:如图,在四边形ABCD中,E,F分别是AB,CD的中点,且EF=1/2(AD+BC).求证:AD∥BC.

已知:如图,在四边形ABCD中,E,F分别是AB,CD的中点,且EF=1/2(AD+BC).求证:AD∥BC.

题目
已知:如图,在四边形ABCD中,E,F分别是AB,CD的中点,且EF=
1
2
答案
证明:取BD的中点H,连接EH、FH,
∵E,F分别是AB,CD的中点,
∴EH是△ABD的中位线,FH是△BCD的中位线,
∴EH=
1
2
AD,EH∥AD,FH=
1
2
BC,FH∥BC,
∴EF+FH=
1
2
(AD+BC),
∵EF=
1
2
(AD+BC),
∴EH+FH=EF,
∴E、F、H三点共线,
∴AD∥EF∥BC,
故AD∥BC.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.