设二次函数f(x)=ax^2+bx(a≠0)满足条件1.f(-1+x)=f(-1-x);2函数f(x)的图像与直线y=x只有一个公共点

设二次函数f(x)=ax^2+bx(a≠0)满足条件1.f(-1+x)=f(-1-x);2函数f(x)的图像与直线y=x只有一个公共点

题目
设二次函数f(x)=ax^2+bx(a≠0)满足条件1.f(-1+x)=f(-1-x);2函数f(x)的图像与直线y=x只有一个公共点
答案
f(-1+x)=f(-1-x)
则对称轴x=-1
所以-b/(2a)=-1
b=2a
与直线y=x只有一个公共点
则方程ax^2+bx=x有两个相等的解
b=2a
所以ax^2+(2a-1)x=0
x[ax+(2a-1)]=0
x=0,x=-(2a-1)/a
有两个相等的解
-(2a-1)/a=0
a=1/2,b=1
f(x)=x^2/2+x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.