函数f(x)=x2-2ax-3在区间[1,2]上存在反函数的充分必要条件是(  ) A.a∈(-∞,1] B.a∈[2,+∞) C.α∈[1,2] D.a∈(-∞,1]∪[2,+∞)

函数f(x)=x2-2ax-3在区间[1,2]上存在反函数的充分必要条件是(  ) A.a∈(-∞,1] B.a∈[2,+∞) C.α∈[1,2] D.a∈(-∞,1]∪[2,+∞)

题目
函数f(x)=x2-2ax-3在区间[1,2]上存在反函数的充分必要条件是(  )
A. a∈(-∞,1]
B. a∈[2,+∞)
C. α∈[1,2]
D. a∈(-∞,1]∪[2,+∞)
答案
解析:∵f(x)=x2-2ax-3的对称轴为x=a,
∴y=f(x)在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a]或[1,2]⊆[a,+∞),
即a≥2或a≤1.
答案:D
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.