如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.
题目
如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.
答案
延长AD到E使AD=DE,连接CE,
在△ABD和△ECD中
,
∴△ABD≌△ECD,
∴AB=CE=5,AD=DE=6,AE=12,
在△AEC中,AC=13,AE=12,CE=5,
∴AC
2=AE
2+CE
2,
∴∠E=90°,
由勾股定理得:CD=
=
,
∴BC=2CD=2
,
答:BC的长是2
.
延长AD到E使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=90°,根据勾股定理求出CD即可.
勾股定理的逆定理;三角形的角平分线、中线和高;全等三角形的判定与性质;勾股定理.
本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 很社会这句话形容人是什么的含义
- 如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.
- 冬去春来,et 英语怎么说啊
- 写诗句 新燕 白鹭 黄鹂早莺
- 1.有一面轮的半径是5厘米,把它平均分成4份,其中一份的面积是多少?3份的面积是多少?
- 离子半径越小,所带电荷数越多,离子键越强,熔沸点越高,为什么
- 一根木料长2.7米,把它砍成5段,一次用2.砍完5段后共用几分钟?
- Monday is Dave‘ favorite day,because_ __ __他上音乐课).We have six classes__ _ __ __从周一到周五
- 已知实数a,b满足:1
- 乘公共汽车的英文
热门考点