如图,在梯形ABCD中,AD‖BC,E,F分别是AB,CD的中点,EF分别与BD,AC相交于M,N,且AD=20cm,BC=36cm,求M

如图,在梯形ABCD中,AD‖BC,E,F分别是AB,CD的中点,EF分别与BD,AC相交于M,N,且AD=20cm,BC=36cm,求M

题目
如图,在梯形ABCD中,AD‖BC,E,F分别是AB,CD的中点,EF分别与BD,AC相交于M,N,且AD=20cm,BC=36cm,求M
梯形ABCD中,∵ E、F分别是AB、CD的中点,
∴ EF= (BC+AD),∵ AD=20cm,BC=36cm
∴ EF= (20+36)cm=28cm
∴ EF//AD//BC(梯形中位线定理)
∵ EF//AD,在△BAD中得
M为BD中点(过三角形一边中点与另一边平行的直线必平分第三边)
∴ EM= AD=10cm(三角形中位线定理)
同理可证NF=10cm
∴ MN=EF-EM-NF=28-10-10=8(cm)
说明:这里用到梯形中位线平行于两底的性质。又由平行线等分线段定理的推论2,得到BD的中点M,从而又得到三角形中位线,又用到了三角形中位线的性质。
答案
梯形ABCD中,∵ E、F分别是AB、CD的中点,
∴ EF= (BC+AD),∵ AD=20cm,BC=36cm
∴ EF= (20+36)cm=28cm
∴ EF//AD//BC(梯形中位线定理)
∵ EF//AD,在△BAD中得
M为BD中点(过三角形一边中点与另一边平行的直线必平分第三边)
∴ EM= AD=10cm(三角形中位线定理)
同理可证NF=10cm
∴ MN=EF-EM-NF=28-10-10=8(cm)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.