线性代数中秩的证明

线性代数中秩的证明

题目
线性代数中秩的证明
设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵
答案
由A^2=A,得A^2-A=0,(A-E)A=0.两n阶矩阵乘积为零矩阵,则两矩阵秩之和不大于n,故由(A-E)A=0得,R(A-E)+R(A)≤n.两矩阵之和的秩不小于两矩阵秩之和,故由(E-A)+A=E,得n=R(E)≤R(E-A)+R(A),R(E-A)=R(A-E),n≤R(A-E)+R(A),...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.