三角函数 证明

三角函数 证明

题目
三角函数 证明
试证 2sin^2 3θ-2sin^2 θ=cos2θ-cos6θ
以θ=π/10代入上式,证明sin(3π/10)-sin(π/10)=1/2
[用cosx=sin(π/2 - x)]
答案
因为
1- 2sin^2 θ=cos2 θ
所以2sin^2 3θ=1-cos6θ
-2sin^2 θ=-1+cos3θ
原式= 2sin^2 3θ-2sin^2 θ=cos2θ-cos6θ
把π/10带入
2sin²3π/10-2sin²2π/10=2(sin3π/10-sinπ/10)(sin3π/10+sinπ/10)=cos2π/10-cos6π/10
sin(3π/10)-sin(π/10)=(cos2π/10-cos6π/10)/2(sin3π/10+sinπ/10)=(sin3π/10-sin(-π/10))/2(sin3π/10+sinπ/10)=1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.