若锐角a,b,c满足(cosa)^2+(cosb)^2+(cosc)^2=1,那么tana×tanb×tanc的最小值为
题目
若锐角a,b,c满足(cosa)^2+(cosb)^2+(cosc)^2=1,那么tana×tanb×tanc的最小值为
答案
答:
锐角a、b、c:正弦和余弦都是正数
(cosa)^2+(cosb)^2+(cosc)^2=1
转化为:
cos²a/(sin²a+cos²a)+cos²b/(sin²b+cos²b)+cos²c/(sin²c+cos²c)=1
1/(tan²a+1)+1/(tan²b+1)+1/(tan²c+1)=1>=3 / ³√[(tan²a+1)(tan²b+1)(tan²c+1)]
所以:
(tan²a+1)(tan²b+1)(tan²c+1)>=27
所以:
(tan²a+1)(tan²b+1)(tan²c+1)>=2tana×2tanb×2tanc>=27
所以:
tana×tanb×tanc最小值为27/8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点