已知关于x的一元二次方程x2-2(a-2)x-b2+16=0 (1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率. (2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
题目
已知关于x的一元二次方程x2-2(a-2)x-b2+16=0
(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率.
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
答案
(1)由题意知本题是一个古典概型
用(a,b)表示一枚骰子投掷两次所得到的点数的事件
依题意知,基本事件(a,b)的总数有36个
二次方程x
2-2(a-2)x-b
2+16=0有两正根,
等价于
| a−2>0 | 16−b2>0 | △=4(a−2)2+4(b2−16)>0 |
| |
即
“方程有两个正根”的事件为A,则事件A包含的基本事件为(6,1)、
(6,2)、(6,3)、(5,3)共4个
∴所求的概率为
P(A)==(2)由题意知本题是一个几何概型,
试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},
其面积为S(Ω)=16
满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)
2+b
2<16}
其面积为
S(B)=×π×42=4π∴所求的概率P(B)=
=(1)本题是一个古典概型,用(a,b)表示一枚骰子投掷两次所得到的点数的事件,基本事件(a,b)的总数有36个满足条件的事件是二次方程x2-2(a-2)x-b2+16=0有两正根,根据实根分布得到关系式,得到概率.
(2)本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16},做出两者的面积,得到概率.
等可能事件的概率.
本题考查古典概型和几何概型,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答题目.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点