设函数f(x)=1/3x3−(1+a)x2+4ax+24a,其中常数a>1. (1)讨论f(x)的单调性; (2)若当x≥0时,f(x)>0恒成立,求a的取值范围.

设函数f(x)=1/3x3−(1+a)x2+4ax+24a,其中常数a>1. (1)讨论f(x)的单调性; (2)若当x≥0时,f(x)>0恒成立,求a的取值范围.

题目
设函数f(x)=
1
3
x3−(1+a)x2+4ax+24a
,其中常数a>1.
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.
答案
(1)f′(x)=x2-2(1+a)x+4a=(x-2)(x-2a),(2分)
由已知a>1,∴2a>2,∴令f′(x)>0,解得x>2a或x<2,
令f′(x)<0,解得2<x<2a,(5分)
故当a>1时,f(x)在区间(-∞,2)和(2a,+∞)上是增函数,在区间(2,2a)上是减函数.(6分)
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.(7分)
f(2a)=
1
3
(2a)3−(1+a)(2a)2+4a•2a+24a
=
4
3
a3+4a2+24a=−
4
3
a(a−6)(a+3)
,f(0)=24a.(9分)
a>1
f(2a)>0
f(0)>0
a>1
4
3
a(a+3)(a−6)>0
24a>0
解得1<a<6,
故a的取值范围是(1,6).(14分)
(1)先求出导函数,利用导数大于0对应的为原函数的增区间,导数小于0对应的为原函数的减区间,即可求f(x)的单调性;
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值,所以须满足最小值大于0,解不等式组
a>1
f(2a)>0
f(0)>0
即可求a的取值范围.

利用导数求闭区间上函数的最值;利用导数研究函数的单调性.

本题主要考查利用导数求闭区间上函数的最值以及研究函数的单调性和函数恒成立问题,是对知识的综合考查,也是高考常考题型.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.