求过点A(5,-1)和B(0,4)且圆心直线2x-7y+8=0的圆的方程

求过点A(5,-1)和B(0,4)且圆心直线2x-7y+8=0的圆的方程

题目
求过点A(5,-1)和B(0,4)且圆心直线2x-7y+8=0的圆的方程
答案
过AB的圆,圆心在AB垂直平分线上
AB中点(7/2,5/2)
AB 斜率(5-0)/(1-6)=-1
所以AB垂直平分线斜率=1
所以AB垂直平分线是y-5/2=1*(x-7/2)
y=x-1
他和2x-7y+8=0的交点就是圆心O
y=x-1
所以2x-7x+7+8=0
x=3,y=2
O(3,2)
r^2=OA^2=(6-3)^2+(0-2)^2=13
所以(x-3)^2+(y-2)^2=13
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.