抛物线y=-x^2+(m-2)x+3(m-1)经过点(3,0)

抛物线y=-x^2+(m-2)x+3(m-1)经过点(3,0)

题目
抛物线y=-x^2+(m-2)x+3(m-1)经过点(3,0)
求这条抛物线的顶点坐标?
答案
由点(3,m)代入解析式可得:-3^2+(m-2)*3+3(m-1)=0
-9+3m-6+3m-3 =0
m =3
所以抛物线的解析式为:y=-x^2+x+6=-(x^2-x-6)=-(x^2-x+1/4)+25/4=-(X-1/2)^2+25/4
因此抛物线的顶点坐标:( 1/2,25/4)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.