已知f(x)为偶函数,周期为a,证明对称轴为2a.

已知f(x)为偶函数,周期为a,证明对称轴为2a.

题目
已知f(x)为偶函数,周期为a,证明对称轴为2a.
答案
证明:∵f(x)为偶函数,周期为a
∴f(x)=f(x+a)
∴f(x)=f(x+a)=f(x+4a)
∵f(x)=f(-x)
∴f(x+4a)=f(-x)
∴f(x-2a+4a)=f(-(x-2a))
∴f(2a+x)=f(2a-x)
∴f(x)对称轴为2a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.