求解 a1,a2,a3,.a2n+1 成等差数列,奇数项和为60,偶数项和为45,则该数列项数为 A.7 B.8 C.9 D.10
题目
求解 a1,a2,a3,.a2n+1 成等差数列,奇数项和为60,偶数项和为45,则该数列项数为 A.7 B.8 C.9 D.10
答案
选A设此数列首项为a1,公差为d,项数为n.由题意,最后一项为a(2n-1),可得此数列的项数为奇数.因为是等差数列,所以,所有奇数项也为等差数列,所有偶数项也为等差数列,它们的首项为a1与a1+d,公差为2d,项数为分别为(n+1)/2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点