设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)^2

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)^2

题目
设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)^2
(1)求数列{an}的通项公式(写出推证过程);
(2)设bn=4/(an×a(n+1)),Tn是数列{bn}的前n项和,求使得Tn<m/20对所有n∈N,都成立的最小的正整数m的值.
答案
(1)8a1=(a1+2)^2
得a1=2
8Sn==(an+2)^2①
8S(n-1)=(a(n-1)+2)^2②
①-②得8an=an^2-a(n-1)^2+4an-4a(n-1)
[an-a(n-1)-4](an+a(n-1))=0
因为an+a(n-1)≠0
所以an-a(n-1)-4=0
即an-a(n-1)=4
用累加法得an=4n-2
(2)bn=4/(an×a(n+1))=1/an-1/a(n+1)
Tn=b1=+2+…………+bn=1/a1-1/a(n+1)=1/(2n+1)
所以Tn max=1/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.