设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵
题目
设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵
这个是答案:
设λ是A的特征值
则 λ^3-2λ^2+4λ-3 是 A^3-2A^2+4A-3E 的特征值
而 A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0
所以 λ^3-2λ^2+4λ-3=0.
λ^3-2λ^2+4λ-3=(λ-1)(λ^2-λ+3)=0
而实对称矩阵的特征值是实数
所以A的特征值都是1.
所以A为正定矩阵.
个人觉得有问题啊,高数里Cayley-Hamilton定理:特征多项式fx=0导出fA=0,但是fA=0未必特征多项式就是fx=0,这题如果A^3-2A^2+4A-3E=O右乘(A+E),结论还是成立,
即(A+E)(A^3-2A^2+4A-3E)=O,这时就有负特征值,
高数里Cayley-Hamilton定理,写错了 是高等代数里的
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点