设F为抛物线y2=4x的焦点,A,B为该抛物线上两点,若xA+xB=7,则|AF|+|BF|=_.

设F为抛物线y2=4x的焦点,A,B为该抛物线上两点,若xA+xB=7,则|AF|+|BF|=_.

题目
设F为抛物线y2=4x的焦点,A,B为该抛物线上两点,若xA+xB=7,则|AF|+|BF|=______.
答案
∵抛物线的方程为y2=4x,∴抛物线的开口向右,2p=4,得
p
2
=1,
由此可得抛物线的焦点为F(1,0),准线方程为x=-1.
∵A为该抛物线上一点,
∴根据抛物线的定义,可得A到F的距离等于A到准线x=-1的距离,
即|AF|=xA-(-1)=xA+1,同理可得|BF|=xB+1.
∵xA+xB=7,
∴|AF|+|BF|=(xA+1)+(xB+1)=(xA+xB)+2=9
故答案为:9
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.